Кар.	Unterrichtsinhalte	Stichworte
1	Grundkompetenzen/ Kompensationsphase (ca. 2 Wochen?)	Themen: Terme, Gleichungen, Funktionen Vorgehen: Zunächst Eingangsdiagnostik (siehe Anlage und *); anschließend Kombination von Lehrervortrag und eigenständigen Übungsphasen (Material hierzu: siehe Anlage in Kombination mit dem Lehrbuch) Durchführungszeitpunkt: bestimmt die Lehrkraft
2	Funktionsbegriff und ganzrationale Funktionen (ca. 3 Wochen)	Interpretation von graphischen Sachzusammenhängen, Definitionsmenge, Wertemenge (Mengen- Intervallschreibweise hier auch Wurzel- und einfache Bruchterme), Funktionsterm, - gleichung, -graf, Symmetrie, Wertetabelle, Verhalten für x-> ±∞, Nullstellen in Abhängigkeit vom Grad, (Term zum Graf und umgekehrt), anschauliche Vorbereitung der Kurvendiskussion (Hoch- und Tiefpunkt), Umgang mit geogebra
3	Einführung des Ableitungsbegriffes	Änderungsrate einer Funktion; Steigung eines Grafen Differenzenquotient Grenzwert des Differenzenquotienten (anschaulicher Zugang, Grenzwertsimulation mit TR) Bestimmung durch algebraische Vereinfachung des Quotienten, h-Methode Infinitesimale Sichtweise
	Ableitung einer Funktion an einer Stelle. Ableitungsfunktion	Berechnung von Ableitungen elementarer Funktionen: $f(x) = x^n$, $n \in Z$, $f(x) = \sqrt{x}$ Verknüpfen geometrischer und algebraischer Sichtweisen Tangenten- und Normalengleichungen Ableitungsfunktionen, höhere Ableitungsfunktionen
	Typische Ableitungskalküle (ca. 4 Wochen)	Summen- und Faktorregel,
4	Funktionsuntersuchung mit Hilfe des Ableitungskalküls (ca. 5 Wochen)	Symmetrie; Monotonie- und Krümmungsverhalten; relative und absolute Extremalpunkte, Wendepunkte (jeweils notwendige und hinreichende Kriterien) vollständige Kurvendiskussion bei ganzrationalen Funktionen (schwerpunktmäßig), (aber auch Beispiele aus anderen Funktionsklassen) und einfache Funktionenscharen Mögliche Erweiterungen: Stetigkeit, Differenzierbarkeit, asymptotisches Verhalten, abschnittweise definierte Funktionen, Übergang ohne Knick, Berührpunkte
5	Anwendungen des Ableitungskalküls (ca. 4 Wochen)	Extremalprobleme (geometrische Bsp und Figuren unter Graphen), Bestimmung von Funktionen mit vorgegebenen Eigenschaften
6	Wachstumsprozesse: Lineares und exponentielles Wachstum Exponentialfunktionen (ca. 4 Wochen)	Zugang über realitätsbezogene Beispiele: Vergleich exp. und lineares Wachstum, absolute und relative Änderung Exponentialfunktionen: $x \rightarrow ab^{(x-d)} + e$ Bestimmung von Exponentialfunktionen aus gegebenen Daten Wachstums- und Zerfallsprozesse, Verzinsung Verdopplung- und Halbierungszeiten als Parameter Grafen für $b = 2$, $1/2$, 10 und Eigenschaften, Vergleich mit linearen, quadratischen und kubischen Funktionen
7	Logarithmen und Logarithmusfunktionen (ca. 2 Wochen)	Logarithmieren neben dem Radizieren als zweite Möglichkeit der Umkehrung des Potenzierens, (Logarithmengesetze [log _b (a) = log10(a) / log10(b)]), verständiger Gebrauch des Taschenrechners, Wiederaufgreifen des Begriffs der

8	Allgemeine Sinusfunktion $x \rightarrow a \sin(b \ x + c) + e$ (2 Wochen)	Umkehrfunktion, Umkehrung der Exponentialfunktion 10 ^x , Eigenschaften der Logarithmusfunktion (evtl. modifizierte LogFunktion x → a log₁₀(x − d) + e), Lösen von Exponentialgleichungen, natürliche Exponentialfunktion Bogenmaß; evtl.noch Einführung von sin(x) und cos(x) Strecken/Stauchen und Verschieben des Grafen der Sinusfunktion, PC-Einsatz Ableitung	
	Weitere Ableitungsregeln	Produktregel mit Übungen und Anwendungen bei	
	(2 Wochen)	trigonometrischen Funktionen.	
Fakultativ, falls noch Zeit sein sollte:			
(9)	Modellierung von	Modellierung von Prozessen aus den Natur-, Sozial- oder	
nach Möglichkeit	Wachstums- und Prozessmodellen	Wirtschaftswissenschaften anhand gegebenen Datenmaterials z. B. aus naturwissenschaftlichen oder demoskopischen Untersuchungen, mittels Exponential- oder anderer bekannter Funktionen, auch durch Nutzung von Rechnern (Regression), exemplarischer Vergleich verschiedener Modelle und Beurteilung ihrer Grenzen. Je nach Zeit andere Wachstumsarten (beschränkt, logistisch)	
(10)	Vertiefung	Nullstellen, Faktorisieren, Polynomdivision	

http://www.standardsicherung.schulministerium.nrw.de/materialdatenbank/nutzersicht/materialeintrag.php?matId=2479&marker=eingangstest

Die Einführung der natürlichen Exponentialfunktion wird in der E-Phase erarbeitet!

Die Kettenregel wird in Q1 behandelt.

Als Vorbereitung auf das Landesabitur sollten auch in der E-Phase regelmäßige Übungen ohne Hilfsmittel (Taschenrechner, Formelsammlung) im Unterricht durchgeführt werden und nach Möglichkeit auch in den Klausuren einen gewissen Anteil ausmachen.

In der Vergleichsklausur in Q2 (im Schuljahr 2017/2018) enthalten die Grund- und Leistungskursarbeiten einen hilfsmittelfreien Teil. Ein Erfahrungsaustausch soll diese Maßnahme evaluieren.

^{*} Link zum Eingangstest und den zugehörigen Materialien (Sinus NRW):